THERCAST®

Starting with THERCAST® Foundry Processes

THERCAST[®] provides valuable support in creating the best design for your castings regardless of your technologies.

THERCAST® has a template dedicated to sand casting, shell casting, low-pressure casting, high-pressure casting, etc.

THERCAST® allows you to simulate your foundry processes in a predictive way. On the first day of this training course, you will learn how to configure and launch a project according to the given foundry technique. We will cover how to analyze result in order to study the full process, physical variations and defects. On the second day, advanced functions such as self-radiation and heat cycling will be presented.

LEVEL

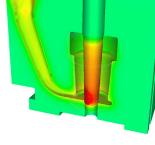
PREREQUISITES

There is no prior requirement for this course.

GOALS

- Data setup for continuous casting
- Launching computation and/or a computation sequence
- Analyzing simulation results
- Studying the full process (filling, cooling)
- Studying the variations of physical quantities (temperature, liquid fraction, etc.)
- Identifying and interpreting casting defects (shrinkage, porosity, etc.)
- Customizing your working environment

TRAINING	DURATION	PRICE EXCL. TAX	PARTICIPANTS
In-company	3 days	€4200 per training	1 to 3 people


Ш

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	 Presentation of Transvalor Course goals
Graphic environment	 Presentation of working environment Project concept with case and stage management Full description of the backstage
Material file manager tool	 Creation of a material from its nominal composition Managing the unit system Displaying physical properties
Segregation models	 Data generation for computations with segregations Visualizing the concentration of elements, micro and macro-scale segregation Introduction to micro-segregation models
Presenting grain structure	 Pole figure display tool Displaying grain orientation
Tutorial Foundry casting in rigid or virtual mold	 Configuring the project units Defining objects (Metal, Pin, Mold) Meshing: quality, generation Defining mold and ground exchanges Defining pin kinematics Defining the computation type Defining calculated criteria Defining initial filling Defining filling properties Defining simulation parameters
Launching computations	Quick launch Procedure for restarting computations

Advanced options for analyzing results	 Displaying scalar results: temperature, liquid fraction, etc. Display options: iso-volumes, cutting planes, graphs Identification of sensitive areas (shrinkage, porosity, etc.) Combined analyses: multi-cases, multi-windows options Exploitation of results: animations, VTFx exports
Industrial case	Data setup, starting computation and results analysis


Casting of a foundry part

RANSVALOR

H

DAY 3 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m. Pre- and post-process sensors Heat cycling with pressure casting application

Functions	 Complex movements of objects with pressure casting and tilted casting application Self-radiation between different domains 	
Application: 'Lost wax molding'	 Creation of a solid shell with generation of an extra thickness from the initial surface Defining of a surface and/or volume shell 	Tilted casting
Conclusions	Questions and course assessment	

