THERCAST®

New Functionalities of THERCAST® NxT 3.0

Are you already familiar with the new THERCAST[®] NxT environment and do you want to improve your knowledge of the software? Discover the new features in NxT 3.0 and learn the best practices right now to make the best out of the software!

At the end of this training, you will have full knowledge of the functionalities in NxT 3.0. First you will discover the new features in the graphical interface. You will then practice with different tutorials illustrating your sector of activity. THERCAST® NxT 3.0 improves your experience through user interface customization, faster and easier navigation, and new shortcuts.

LEVEL

Intermediate

PREREQUISITES

A first experience with THERCAST[®] software is required.

GOALS

- Mastering the new features in THERCAST®
- Taking advantage of these features according to your sector of activity
- Improving the quality of cast parts thanks to even more predictive results
- Taking advantage of the electromagnetic stirring (EMS) calculation

TRAINING	DURATION	PRICE EXCL. TAX	PARTICIPANTS
In-company	1 day	€1400 per training	1 to 3 people

Ш

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	 Presentation of Transvalor Course goals 	
New features in the interface	 Meshing improvements Custom legends Results grouped by categories Customizable display Simplified templates Plot for each object 	
New features	 Advanced input numerical options Bubbles calculation Surface tension Viscosity Marangoni Effect Permeability Model of Darcy Capability to empty initial filling Multi-Material Filling Enrichment types for Macrosegregation 	Self-radiation is considered
Python API	 Introduction to the Python API to setup and analyze automatically your simulation Python recorder User interaction Real time Output Display 	
Lost Foam	 Define cavity material Replacement of foam by metal Visualization of Foam and Metal results 	
Electromagnetic Stir- ring	ELECTROMAGNETIC COMPUTATION • Defining of the input and output current • Definition of the mesh for the 'Room mesh' environment • Creation of the global mesh • Mesh suited to the skin thickness • Check the quality of the global mesh THERMAL COMPUTATION • Defining the billet • Parameters of the simulation: storage, heating time, coupling with electroma- gnetic computation STARTING COMPUTATION • Chained computation by setting the 'In Loop' tab • Chained induction and casting simulation ANALYZING RESULTS • Evolution of temperature, magnetic fields, magnetic potential, induced current	Filling via casting bucket
Optimization	 Explanation of core concepts (individuals, generations, minimizables, constraints, parametered actions) Case study 	Temperature during the filling
Conclusion	Questions and course assessment	

Ω

SVALO

Z V

μ Π