Mastering the Software

After this training you will have a deeper understanding of THERCAST®, and you will also be able to comfortably build advanced models that gives meaningful results.

This training is for those that want to use THERCAST® at its full potential. We take our time to explain how THERCAST® works in detail, not only the fundamental theory, but also the thought process to build advanced models and how to interpret the results.

LEVEL

Advanced

THERCAST®

PREREQUISITES

A first experience with THERCAST® software is required

GOALS

- Overview of main multi-physics equations and algorithms
- Performing your data setup in line with the recommended workflow
- Analyze and compare case studies with different configurations
- Understanding and analyzing the results

TRAINING	DURATION	PRICE EXCL. TAX	PARTICIPANTS
In-company	2 days	€2800 per training	1 to 3 people

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	 Presentation of Transvalor Course goals 	
Multi-physics (Theory)	 Thermal Thermo-Mechanical Macrosegregation Boundary Conditions Liquid, Solid and Solidifications constitutive equations Turbulent Model 	
Material Data Tool	 Reading the data Minimum input required Macrosegregation Microstructure and Microsegregation Heterogeneous liquid flow Import data from a JMatPro file 	
Macrosegregation Case Study	 Presentation of case study Analysis of results Enrichment influence Visualization of scalars Synchronized multi-window 	

DAY 2 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Meshing	 Mesh Repair Breaking Elongated Elements Technique Void Meshing Mesh adaptation Algorithm Visual Examples Tips and Tricks
Advanced Setup data options	 Inlet Filter Surface Tension Porous Mold Chained Simulations
Advanced Calculation Models	Radiation CAFE Method
Advanced results analysis options	 Sensors, Inclusions, Samples and Bubbles Storage and Timestep Synchronized multi-window animation Improved readability Custom actions
Conclusion	Questions and course assessment