

Starting with SIMHEAT®

The time has come to discover the latest software in the Transvalor suite devoted to heat treatment processes: SIMHEAT® and the extent of its possibilities. After this course, you'll be able to get the most out of the product!

This training is your first approach to the SIMHEAT® software. The first day gives you an understanding of all of the data setup steps, how to create material files and TTT diagrams, the procedure for launching computations and how to analyze the main results. Day two will be devoted to a more thorough analysis of a

complete panel of results for better interpretation of the physical phenomena. Key functions will be covered such as treatments for aluminum and heat treatments via induction as well as surface treatments. Customizing your working environment will then be covered.

LEVEL

Beginner

PREREQUISITES

There is no prior requirement for this course.

GOALS

- · Discovering the interface
- Data set up of a heat treatment simulation of a forged, cold formed or cast part
- · Launching a single computation and/or a computation sequence
- Analyzing simulation results
- · Defining the process conditions in order to obtain the best mechanical properties
- Be able to predict the microstructure changes during heating or cooling
- Creating your own TTT diagram using SIMHEAT®
- \cdot Observing the influence of the diffusion of carbon on the changes in surface hardness
- · Determining the ideal treatment conditions in order to reduce cycle times
- Customizing your working environment

TRAINING	DURATION	PRICE EXCL. TAX	PARTICIPANTS
In-company	3 days	€4500 per training	1 to 3 people

111

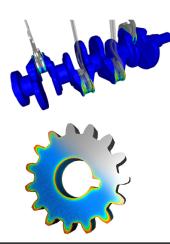
VALOR

Ŋ

Ζ

4

Ľ

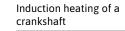

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

DAY 3 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m

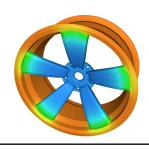
Introduction	 Presentation of Transvalor Course goals Review of the finite element method 	Modelling	 Maxwell's equations Definition of the heating cycle Coupling between thermal and electromagnetic aspects
	 Presentation of the environment Concepts: stores, processes, cases and stages Importing geometries 		 Properties: electric resistance, magnetic permeability, skin thickness, etc Coupling with metallurgy
Data setup	 Handling objects (creation, trimming) Surface and volume meshes Definition of kinematics (if required by the process) Rheology and thermal exchanges Material database Application to a tutorial Working environment presentation Starting computation 	Induction heating (Tutorial case)	ELECTROMAGNETIC COMPUTATION • Defining of the input and output current • Definition of the mesh for the 'Room mesh' environment • Creation of the global mesh • Mesh suited to the skin thickness • Checking the quality of the global mesh
Launching compu- tations	 Quick launch Batch handler and chained simulations Fe-Fe3C diagram Review of TTT and TRC diagrams 		THERMAL COMPUTATION • Defining the billet • Parameters of the simulation: storage, heating time, coupling with electromagnetic computation
General			
Modeling quenching	 Approximating the TRC diagram using the TTT diagram Exercise: generating TTT and TRC diagrams with FORGE* Multi-physical coupled model Exercise: model quenching in different baths (Houghton oils, polymer solutions) Exercise: quenching via sprays 		STARTING COMPUTATION • Chained computation by setting the 'In Loop' tab • Chained induction and forming simulation ANALYZING RESULTS • Evolution of temperature, magnetic fields, magne- tic potential, induced current • Display a field in an isovolume
Result analysis	 Displaying results, the main scalars and vectors Graphs, animations, VTFx exports Multi-window analysis Management of animations and exporting results 	Symmetry	How to model symmetry Boundary conditions of Maxwell's equations
		Induction with movement by the part or the	Continuous or step by step motion Application: a multiple of billets moving inside the

DAY 2 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m. Austenitizing • Generation of material composed of perlite and ferrite
• Definition of the heating cycle
• Report analysis: phase transformation, austenite content,

	optimizing the heating cycle	
Carburizing	 Generating anisotropic mesh Defining the carbon content TTT diagram according to the carbon content Result analysis: carbon content, phase transformation, hardness 	
Tempering	 Model used to determine hardness Exercise: modeling of tempering after quenching Result analysis: residual stresses, hardness, etc. 	
Optimization	 Basic optimization principle Determining exchange coefficient thanks to reverse engineering 	
Working environ- ment customization	Creating specific models and specific data sets (mate- rials, heat exchanges, etc.)	
Conclusions	Questions and course assessment	


inductor

the part or the


inductor

Conclusion

Surface heat treatment (carburizing, quenching, tempering)

- Questions and course assessment

Hardening via aluminum precipitation (artificial aging)