

# Automatic Optimization

You need to optimize your process? Discover the solutions for identifying an ideal billet for complete and flawless filling or a tooling design that minimizes stress. No more long and boring trial plans. Choose automatic optimization!

FORGE® automatic optimization is an extremely effective tool. Thanks to its genetic algorithm, you can automatically vary an entire range of process parameters (billet dimensions, tool shapes, billet positioning, etc.). This way you will be able to identify the best conditions for optimally forming your part. In addition, you will study parameter identification techniques using reverse engineering as well as couplings with CAD environments for designing blockers and tooling.

#### LEVEL

Advanced - Users willing to master automatic optimization principles so as to achieve reliable and efficient use.

#### PREREQUISITES

- A good grounding in the use of FORGE® is required.
- A perfect knowledge of the process is essential to determine what you want to optimize and how.
- You need to understand chaining and transitions.

### GOALS

- Understanding optimization concepts and terms: genetic algorithm (individuals and generations), minimizable, constraint and parametered action
- Optimizing industrial processes
- Reducing billet volume and finished part faults
- Identifying parameters by reverse engineering
- Coupling optimization with CAD (PTC Creo Parametric, SolidWorks and Catia)

|       | TRAINING   | DURATION | PRICE EXCL. TAX    | PARTICIPANTS  |
|-------|------------|----------|--------------------|---------------|
| ///// | In-company | 1.5 days | €2400 per training | 1 to 3 people |

ш

П

Π

| <b>DAY 1 &gt;</b> 8.30 a.m. 1                                                  |                                                                                                                                                                                                    |                                                           |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Introduction                                                                   | <ul> <li>Presentation of Transvalor</li> <li>Course goals</li> </ul>                                                                                                                               |                                                           |
| Reminders on chaining                                                          | <ul> <li>Chaining</li> <li>Transitions</li> <li>2D &amp; 3D chaining</li> </ul>                                                                                                                    |                                                           |
| General concepts                                                               | <ul> <li>Automatic optimization</li> <li>Individuals and generation</li> <li>Definition of a minimizable</li> <li>Definition of a constraint</li> <li>Definition of parametered actions</li> </ul> | Optimization of a forging sequence                        |
| Optimizing<br>billet volume     • Setup       • Analyzing optimization results |                                                                                                                                                                                                    |                                                           |
| Optimizing a 3D<br>rolled blocker                                              | <ul> <li>Setup</li> <li>Launching computation</li> <li>Analyzing optimization results</li> </ul>                                                                                                   | HHHP                                                      |
| Determining<br>a friction<br>coefficient                                       | <ul> <li>Defining the simulation</li> <li>Setup</li> <li>Interpreting the results</li> </ul>                                                                                                       | Original design (in red) vs Optimized<br>design (in blue) |
| Determining rheology<br>by reverse analysis                                    | <ul> <li>Defining the simulation</li> <li>Setup</li> <li>Interpreting the results</li> </ul>                                                                                                       |                                                           |

## **DAY 2 >** 8.30 a.m. to 12.00 p.m.

| Determining a heat<br>transfer coefficient | <ul> <li>Defining the case</li> <li>Setup</li> <li>Interpreting the results</li> </ul>                                        |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Coupling<br>optimization with<br>CAD       | <ul> <li>Coupling concept</li> <li>Example of use with PTC Creo Parametric</li> <li>Example of use with SolidWorks</li> </ul> |
| Innovation                                 | <ul> <li>Optimization with discrete values</li> <li>Optimization with Design Of Experiment</li> </ul>                         |
| Conclusions                                | Questions and course assessment                                                                                               |



Genetic algorithm

ш

H.