

Débuter avec FORGE® Hot Metal Forming Essential

Découvrez FORGE® Hot Metal Forming Essential, le module qui convient à la plupart des procédés standards de mise en forme à chaud, spécialement destiné au forgeage en matrice fermée.

Le module Hot Metal Forming Essential de FORGE® permet de valider vos gammes de forgeage, en particulier l'écoulement du métal, la détection des défauts majeurs et les efforts de forgeage. Durant la première journée, vous apprendrez à

mettre en données un cas de simulation, lancer des calculs et analyser les principaux résultats. La deuxième journée vous fera découvrir des fonctionnalités complémentaires pour prédire les défauts et optimiser votre gamme de conception.

NIVEAU

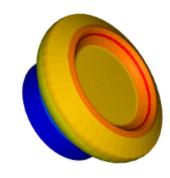
PRÉREQUIS

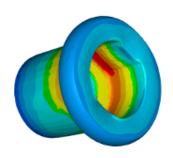
Cette formation ne nécessite pas de prérequis.

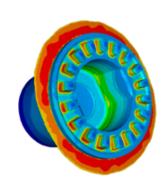
OBJECTIFS

- Mettre en données un cas de forgeage à chaud pour la réalisation de vos pièces mécaniques
- · Analyser les résultats de simulation
- Identifier les défauts de forgeage (replis, criques, etc.) et leurs causes
- Visualiser un fibrage et suivre des grandeurs physiques (température, pression, etc.)
- · Personnaliser son environnement de travail

AUTRES FORMATIONS CONSEILLÉES




- Fondamentaux de la modélisation par éléments finis
- Nouvelles fonctionnalités de FORGE® NxT 4.1


FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2800 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation Rappels sur la méthode des éléments finis
Mise en données	 Présentation de l'environnement Concepts de stores, procédés, cas et étapes Import des géométries Techniques de maillage et remaillage Définition de la cinématique Rhéologie, frottements, échanges thermiques, base de données matériaux (FPD) Notion de transition Application à un cas tutoriel
Lancement des calculs	 Lancement rapide Gestionnaire de calculs et chaînage de simulations
Analyse des résultats	 Affichage des résultats, principaux scalaires (corroyage, contraintes résiduelles, taille de grains) et vecteurs Tracés de courbes, animations, export VTFx Analyse multi-fenêtres Gestion des animations et export des résultats
Mise en données d'un cas industriel	- Lancement de calcul

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Analyse des résultats du cas industriel	Interprétation des résultats
Fonctionnalités complémentaires	 Marquage et fibrage Capteurs prédéfinis et post-procédé Cisaillage, perçage et ébavurage du lopin Import assemblage
Calcul outillage	Approche découplée
Personnalisation de l'environnement de travail	 Création de modèles et de données spécifiques (matériaux, presses, frottements) Personnalisation des raccourcis clavier
Conclusion	Questions diverses et évaluation de la formation

Evolution de la température au cours des 3 phases de forgeage d'une bague