TRANSWELD®

Starting with TRANSWELD®

Discover with TRANSWELD[®] what simulation can bring to the deep understanding and analysis of the physical and metallurgical characteristics of welds.

Many industries like the aeronautics and automotive industries use Laser Beam Welding to assemble components while guaranteeing their physical material continuity. This training is your first approach to TRANSWELD® software that simulates laser processes for all types of metals. You will learn how to use the various functionalities of the software, how to configure welding simulations and how to analyze their main results. The course will also cover topics such as Automated Adaptive Anisotropic Remeshing, the configuration of the laser beam and the customization of the working environment.

LEVEL

PREREQUISITES

There is no prior requirement for this course.

GOALS

- Mastering the graphical user interface
- Configuring welding simulations with TRANSWELD®
- Customizing your working environment for greater effectiveness
- Speeding up the data configuration
- Analyzing computation results better

TRAINING	DURATION	PRICE EXCL. TAX	PARTICIPANTS
In-company	3 days	4200 € per training	1 to 3 people

Contact us to set the course date and location.

ш

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	 Presentation of Transvalor Course goals 	
Graphic environment	 Presentation of the working environment Concepts: stores, processes, cases and stages 	
Ergonomic User Interface	 Right click: customization of contextual menu Automatic saving of project Customization of keyboard shortcuts 	
Data Setup LBW / EBW	 Configuration of welded components: geometry, mesh, material Laser parameters (efficiency, power, etc.) Design of weld path trajectories with work angles and travel angles Definition of the distance to the parts and speed of the laser Definition of the weld sequence Global parameters of the simulation: heat transfer, process time, room temperature 	
Computation	Quick launch and computation restart procedure	
Results analysis	 Displaying the results: temperature, liquid fraction, heat affected zone, Von Mises Diagrams, animations, VTFx exports Concepts of sensors and marking grids 	

Laser beam welding of two sheets with automatic remeshing

DAY 2 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Advanced Configuration Options GMAW / GTAW MWB	 Multi-object selection: advanced option of geometry import Editing of files (materials, heat transfer, heat source) directly from the interface Design of weld path trajectories with work angles and travel angles Definition of the distance to the parts and speed of torches Design of weld run sequence with sequencer 	
Data setup PWB	 Generation of weld bead sections Generation of weld beads Understanding the use of filler material in PWB 	Temperature fields in Arc Welding process
Computation	MWB and PWB computation guick launch	

DAY 3 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Advanced results analysis options	ranced results• Custom actions (display configuration, scalar display)• lysis options• Synchronized multi-window animation	
Data setup RSW / CDW / DDFW / IFW / LFW	 Concept of chained computations or stand-alone computation Configuration of objects, cathodes, anodes and welded components Remeshing techniques Configuration of simulation parameters Definition of heat sources Type of computation Quick launch and results analysis 	1
Software customization	Creating specific process models and data sets (materials, heat transfer, friction, etc.)	Temperature f cutting plane Drive Friction
Conclusions	Questions and course assessment	

Temperature fields displayed on a cutting plane at the end of a Direct Drive Friction Welding process ш

A L O R