

New functionalities of COLDFORM® NxT 4.1

Do you want to further increase your productivity? Learn how to use the new features in COLDFORM® NxT 4.1 and make them work for you!

By the end of this course, you will be able to use all the new features in COLDFORM® NxT 4.1 and work with the best practices to configure data and analyze results. COLDFORM® NXT 4.0 provided a new user experience thanks to the optimization module freshly implemented in its interface. With COLDFORM® Nxt 4.1, we go a step further, new actions are available, linked parameters are available among other new features. The new graphical functionalities will also

be covered in this course. You will appreciate the new developments such as the phase field approach used in shearing processes, and take advantage of the reduction of the computation time in 2D.

The implementation of local remeshing in 3D improves the quality and accuracy of the solutions. It is now possible to model the steady state in cold rolling. This approach reduces the computation time.

LEVEL

Intermediate

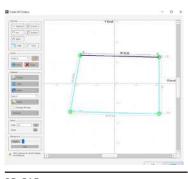
PREREQUISITES

In-company

A first experience with COLDFORM® software is required.

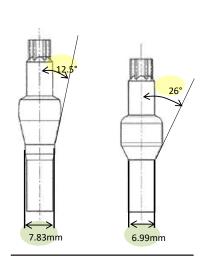
GOALS

- Mastering the new features in COLDFORM® NxT 4.1
- Taking advantage of the new features of the interface to configure data and analyze results faster
- Increasing the predictive quality of simulation with more realistic data setups
- Gaining experience based on practical case studies

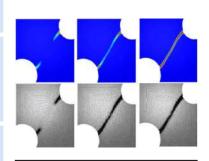

DURATION	DATES 2024				
1 day	11 June		08 October		
TRAINING		PRICE EXCL. TAX		PARTICIPANTS	
Inter-company		580 € per person		3 to 8 people	

1400 € per training

1 to 10 people


DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	Presentation of TransvalorCourse goals	
New features	 Meshing improvements Result Analysis 2D CAD Visualization of tensors and vectors Custom legends Results grouped by categories Customizable display 	
Material viewer	Graphical User Interface View and edit JMatPro files, the FPD Base database, files in the Cold Rheology Generation Tool	
Python API	 Introduction to the Python API to setup and analyze automatically your simulation Python recorder User interaction Real time Output Display 	
Steady state in cold rolling	 Simulation setup of a process Remeshing between passes Field analysis: temperature, stress, velocity 	
Automated optimization	 Explanation of core concepts (individuals, generations, minimizables, constraints, parametered actions) Case study Results analysis (best individual, comparison) Linked parameters New actions available Direct definition of rules 	
Shearing process	Data setupAdvantages of Phase Field approachResults analysis	
Conclusions	• Questions and course assessment	



2D CAD

Optimization of tool geometry

Simulation of crack initiation and propagation