

Starting with FORGE® Hot Metal Forming Premium

The time has come for you to discover FORGE®'s Hot Metal Forming Premium module and its range of possibilities. Thanks to this module, run and analyze your warm or hot forming simulations!

This training is a first approach to using FORGE®'s Hot Metal Forming Premium module. On the first day, you will learn how to configure the data step-by-step, how to launch computations and how to analyze the main results. On the second day, you will learn how to examine a wide range

of results more thoroughly to better interpret the physical phenomena at hand.

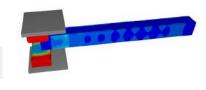
Key features such as die analysis, grain flow tracking tools or fold detection will be covered.

LEVEL

Beginner

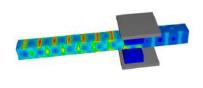
PREREQUISITES

There is no prior requirement for this course.

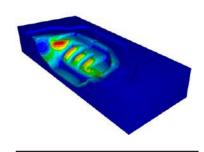

GOALS

- · Knowing how to configure forging simulations (punching / closed die forging)
- Analyzing simulation results
- Identifying and interpreting forging defects (folds, cracks, etc.)
- · Viewing grain flow and monitoring physical values (temperature, pressure, etc.)
- Predicting die wear and performing die analysis (stress, etc.)
- · Customizing your working environment

TRAINING	DURATION	PRICE EXCL. TAX	PARTICIPANTS
In-company	2 days	2800 € per training	1 to 3 people


Contact us to set the course date and location

DAY 2 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.



Temperature	01/0	
Temperature	evo	llition

Introduction	Presentation of TransvalorCourse goalsReview of the finite element method
Data setup	 Working environment presentation Concepts: stores, processes, cases and stages Import of geometries Meshing and remeshing procedures Configuration of kinematics Rheology, friction, heat transfer, materials database (FPD) Concept of transition Application to a tutorial
Launching computations	 Quick launch Computation manager and chained simulations
Analyzing results	 Display of results, main scalars and vectors Diagrams, animations, VTFx exports Multi-window analysis Handling animations and exporting results
Data setup for an industrial case	- Starting the computation

Equivalent strain evolution

Temperature evolution on the lower tool during die analysis with couple approach

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Analyzing results from an industrial case	Interpreting results
Additional functions	 Marking grid and grain flow Predefined and post-process sensors Furnace-to-press initial cooling Shearing, blanking and flash trimming of workpiece Import of tooling assembly
Die analysis	Uncoupled and coupled approach
Working environment customization	 Creating specific models and data sets (materials, presses, friction, etc.) Custom Keyboard Shortcuts
Conclusions	• Questions and course assessment

Press configuration