

Mastering the software

Enhance your knowledge with COLDFORM® and master the latest software features!

Thanks to this training, you will develop expertise on the newly redesigned graphic interface, which speeds up data setup and result analysis, and you will have a better knowledge of the latest solver features.

You will discover how to use the multi-project

mode, customized 'data stores' and advanced sensor and marking techniques.

After this training, you will also know how to identify defects in order to better analyze and understand

LEVEL

Intermediate - Users looking for support when moving to the NxT version and willing to learn all of its functions.

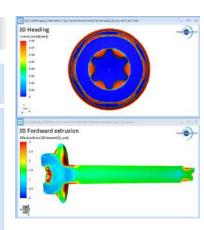
PREREQUISITES

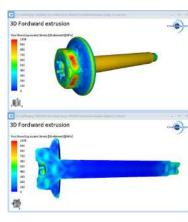
A first experience with COLDFORM® software is required.

GOALS

- · Performing your data setup according to the 'workflow' set out by the new graphic interface
- · Launching 'step by step' or 'full process' computation
- · Understanding and analyzing the results
- Customizing your working environment

OTHER RECOMMENDED COURSES




• COLDFORM® - Die analysis

DURATION	DATES 2024		
1.5 days	08-09 February	12-13 June	09-10 October
TRAINING		PRICE EXCL. TAX	PARTICIPANTS
Inter-company		1120 € per person	3 to 8 people
In-company		2250 € per training	1 to 3 people

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	Presentation of Transvalor Course goals	
Data setup	 Process, case, stage and store concepts Importing geometries, meshing quality, local and global surface repair Meshing parameters: advanced options, mirror, surface export Object transformation: offset, flipping, gravity adjustment Global switch from 2D to 3D Rheological data: cold rheology generator, stress curves in tabulated format, anisotropic behavior Defining friction or local heat transfer Data verification with 'data setup status' 	
Launching computations	 Launching stages or a full simulation Optimum number of cores for a simulation Computation manager Computation report 	
Result analysis	 Identifying common defects: underfilling, folds, cracks Graphs: energy and forces Comparing projects with multi-windows viewing tool Animation of one or more process stages Customizing working environment 	
Advanced functions	 Predefined and post-processed sensors Marking grid: tracking central area and sheared surface Identification of piping effect by under-skin marking Identification of the flash by reverse engineering 	
Customizing environment	 Customizing the store manager and the data setup Creating your data setup case or stage Recording macros for automating data setup One-click sharing 	

Multi-window analysis

DAY 2 > 8.30 a.m. to 12.00 p.m.

Numerical aspects	Managing time stepsRemeshing techniques and meshing adaptationAnalytical and smoothed die	
Advanced functions	Forging • Transition: forging in a multiple cavity matrix • Self-contact, gas and lubricant trapping User routines • General concept • Selection of predefined variables	
Conclusions	Questions and course assessment	

Forging sequence Courtesy of Miguel Altuna Institute