

Automatic optimization

You need to optimize your process? Discover the solutions for identifying an ideal billet for complete and flawless filling or a tooling design that minimizes stress. No more long and boring trial plans. Choose automatic optimization!

FORGE® automatic optimization is an extremely effective tool. Thanks to its genetic algorithm, you can automatically vary an entire range of process parameters (billet dimensions, tool shapes, billet positioning, etc.). This way you will be able to identify

the best conditions for optimally forming your part. In addition, you will study parameter identification techniques using reverse engineering as well as couplings with CAD environments for designing blockers and tooling.

LEVEL

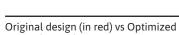
Advanced - Users willing to master automatic optimization principles so as to achieve reliable and efficient use.

PREREQUISITES

A good grounding in the use of FORGE® is required.

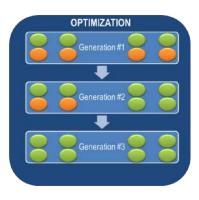
A perfect knowledge of the process is essential to determine what you want to optimize and how.

You need to know the chaining and transitions concepts.


GOALS

- · Understanding optimization concepts and terms: genetic algorithm (individuals and generations), minimizable, constraint and parametered action
- Optimizing industrial processes
- Reducing billet volume and finished part faults
- · Identifying parameters by reverse engineering
- Coupling optimization with CAD (PTC Creo Parametric, SolidWorks and Catia)

DURATION	DATES 2024				
1.5 days	05-06 March	27-28 June	06-07 November		
TRAINING		PRICE EXCL. TAX	PARTICIPANTS		
Inter-company		1120 € per person	3 to 8 people		
In-company		2400 € per training	1 to 3 people		


DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Intro	duction	Presentation of TransvalorCourse goals		
Remi	inders on chaining	Chaining conceptTransitions2D & 3D chaining		?
Gene	eral concepts	 Automatic optimization concept Individuals and generation notions Definition of a minimizable Definition of a constraint Definition of configured actions 		Optimization of a forging sequence
	mizing t volume	Setup Analyzing optimization results		
	mizing a 3D d blocker	SetupLaunching computationAnalyzing optimization results	明	细期
a fric	rmining ition icient	Defining the simulationSetupInterpreting the results		Original design (in red) vs Optimized design (in blue)
	rmining rheology verse analysis	Defining the simulationSetupInterpreting the results		

DAY 2 > 8.30 a.m. to 12.00 p.m.

Determining a heat transfer coefficient	Defining the caseSetupInterpreting the results
Coupling optimization with CAD	 Coupling concept Example of use with PTC Creo Parametric Example of use with SolidWorks
Innovation	Optimization with discrete valuesOptimization with Design Of Experiment
Conclusions	Questions and course assessment

Genetic algorithm