

Starting with FORGE® Hot Metal Forming Essential

FORGE® Hot Metal Forming Essential is suitable for most standard hot forging processes and is specifically designed for closed die forging.

The FORGE® Hot Metal Forming Essential module helps you to validate your forging process chains, especially regarding the metal flow, the detection of major defects and the forging efforts. During day 1, you will learn

how to configure the simulation of a process, how to run calculations, and how to analyze its main results. Day 2 will cover additional features for the prediction of defects and the optimization of your manufacturing processes.

LEVEL

PREREQUISITES

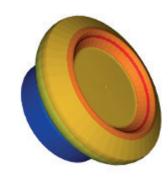
There is no prior requirement for this course.

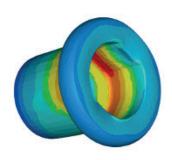
GOALS

- · Configuration of the simulation of one of your hot forging processes
- Analysis of the simulation results
- Identification of forging defects (folds, cracks, etc.) and causes
- Display of grain flow and monitoring of physical values (temperature, pressure, etc.)
- Workspace customization

OTHER RECOMMENDED TRAININGS

- New functionalities of FORGE® NxT 4.0
- Finite element modeling fundamentals


TRAINING	DURATION	PRICE EXCL. TAX	PARTICIPANTS
In-company	2 days	2600 € per training	1 to 3 people


Contact us to set the course date and location

Ш

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Introduction	Transvalor presentation Course goals Reminders of the finite element method	
Data setup	 Working environment presentation Concepts: stores, processes, cases and stages Import of geometries Meshing and remeshing procedures Configuration of kinematics Rheology, friction, heat transfer, materials database (FPD) Concept of transition Application to a tutorial case 	
Computation	- Quick launch - Computation manager and chained simulations	
Results analysis	 Display of results, main scalars (reduction, residual stresses, grain size) and vectors Diagrams, animations, VTFx exports Multi-window analysis Handling animations and exporting results 	
	- Starting the computation	

DAY 2 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Analyzing results of an industrial case	- Results analysis	
Additional features	Marking grid and grain flow Predefined and post-processed sensors Shearing, blanking and flash trimming of workpiece Import of tooling assembly	
Die analysis	- Uncoupled simulation	
Workspace customization	Creating specific models and data sets (materials, presses, friction, etc.) Custom keyboard shortcuts	
Conclusions	- Questions and course assessment	

Temperature evolution during the 3 phases of forging a ring