

Die analysis

How to estimate the level of stress in the dies? How to extend the lifetime of your dies? How to assess temperature changes in your dies? If you want to learn more about die analysis, this course is for you!

Tooling costs represent up to 15% of the total forging cost. Extending the service life of dies is an ongoing challenge for producing more parts using the same dies and lowering production costs. After this course, you will be able to assess wear, quantify the deformation affecting your matrices and predict premature matrix failure. For hot forging, you will master

the steady state approach and you will be able to determine the die temperature after a number of forging operations.

For cold forging, you will know how to model prestressed dies (assembled by interference fit) and optimize shrinkage. Based on industrial examples, this course allows you to improve dies design even prior to manufacture them!

LEVEL

Intermediate - Users willing to enhance their knowledge of die analysis.

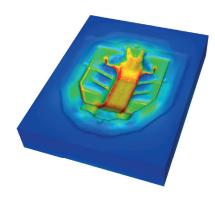
PREREQUISITES

A good grounding in the use of FORGE® is required.

GOALS

- Simulating die mechanical and thermal behavior (damage, deterioration due to fatigue)
- Analyzing and interpreting computation results (wear, stress, etc.)

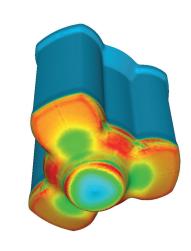
OTHER RECOMMENDED COURSES


- FORGE® Automatic optimization
- FORGE® Heat treatment of steel and aluminum

`	DUKATION		DATES 2023	
	2 days	04-05 April	08-09 August	04-05 December
	TR	AINING	PRICE EXCL. TAX	PARTICIPANTS
Ir	nter-company		1080 € per person	3 to 8 people
Ir	n-company		2600 € per training	1 to 3 people

Ш

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.


Introduction	- Transvalor presentation - Course goals	
Rigid tool computations	Why this kind of computation? Recommendations for meshing the surfaces of 2D/3D dies Analysis of the results of forging simulations with 2D/3D rigid dies (abrasive wear, normal stress, etc.)	
Uncoupled computations	Recommendations for volume meshes of 2D/3D dies Setup Analyses of additional results on 2D/3D tooling (Von Mises stress, principal stresses)	
Coupled computations	Why this kind of computation? Defining Master-Master and Master-Slave contacts 2D/3D setup Analyzing results (stress, temperature) Options in coupling computations	

Maximum effective stress observed in the fillet radii

DAY 2 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.

Uncoupled and coupled computations comparisons	- Material flow - Normal stress - Abrasive wear - Von Mises stress - Die deformation - Forging load - Choosing the type of computation	
Prestressed dies	Defining the prestress concept Deformable die interpenetration in 2D mode Virtual Interference Fit in 3D (VIF) Setup Viewing and interpreting results	
Steady state	- Concept - Setup - Viewing and interpreting results	
Archard's wear model		
Conclusions	- Questions and course assessment	

Abrasive wear on a punch when forming a constant velocity joint