ALL SOFTWARE

Finite element modeling fundamentals

Perfect your use of the finite element method and understand how it is applied to solving large deformation issues. This way you can improve the quality of your results with a better understanding of numerical aspects. This is one of the challenges of this training course!

During this course, you will cover the essentials of finite element modeling and apply it to the mechanics of continuous environments. This day lets participants broaden their numerical knowledge ready for putting Transvalor software solutions to more intense use, especially FORGE® & COLDFORM®. You will study the fundamentals linked to mechanical and thermal solvers, meshing and remeshing as well as the differences between formulations (Lagrangian, Eulerian or ALE).

Through examples and during the simulation analysis workshops, participants will be able to understand the impact that numerical parameters have on the results obtained.

LEVEL

Beginner - Users wishing to expand their numerical knowledge in the field of finite element simulation and modeling.

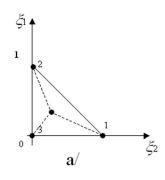
PREREQUISITES

There are no prior requirements for this course.

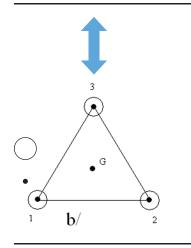
GOALS

- · Knowing the basics of finite element in order to make better use of our products and take advantage from the simulation
- Understanding the fundamentals of the finite element method: from the thermal equation to the mechanics
- Gaining a more in-depth knowledge of space and time discretization
- · Mastering meshing and remeshing principles
- · Learning how to determine material behavior
- Checking the impact of numerical parameters on the end result

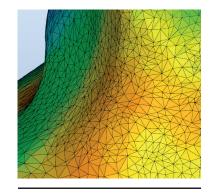
OTHER RECOMMENDED COURSES


• FORGE® - Die analysis

DURATION	DATES 2023		
1 Day	18 January	10 May	12 September
TD	AINING	DDICE EVEL TAY	DARTICIDANTS


TRAINING	PRICE EXCL. TAX	PARTICIPANTS
Inter-company	540 € per person	3 to 8 people
In-company	1300 € per training	1 to 3 people

DAY 1 > 8.30 a.m. to 12.00 p.m. & 1.30 p.m. to 5.00 p.m.


Imtroduction	- General presentation - Course goals	
Numerical simulation	Why numerical simulation is useful for forming materials Real-life examples	
Introduction to the finite ele- ment method	Finite element method principle Space and time discretization Interpolation function Boundary conditions	
Domain discretization and formulation	Mesh and element types Mesh surface and density quality criteria Lagrangian or Eulerian formulation Remeshing ALE method	
Handling symmetries	2D axisymmetric or 2D deformation plane 3D with symmetry Impact of symmetries on computation time Result analysis	
Handling the contact	Definition and types Contact distance calculation Penalized contact Deformable multibody contact	
Mechanical and thermal problem resolution	NO-linear behavior resolution Mechanical and thermal formulation Direct or iterative solver method Time step management Geometry updating Transfer of fields Mechanical-Thermal-Metallurgical coupling Diffusion equation resolution	
Material behavior	Behaviors: visco-plastic, elasto-plastic, plastic and elastic Thermo-dependence and sensitivity to the deformation rate Plasticity criteria and flow stress concept Isotropy and anisotropy	
Exercices	- Applying post-processing to mechanics	
Conclusions		

A mini-element, 3 node triangle also called P1+/P1

Pressure degrees of freedom Velocity degrees of freedom

Transvalor products tetrahedral mesh